Abstract

Purpose High-efficiency video coding (HEVC) is the latest video coding standard that has better coding efficiency than the H.264/advanced video coding (AVC) standard. The purpose of this paper is to design and develop an effective block search mechanism for the video compression-HEVC standard such that the developed compression standard is applied for the communication applications. Design/methodology/approach In the proposed method, an rate-distortion (RD) trade-off, named regressive RD trade-off is used based on the conditional autoregressive value at risk (CaViar) model. The motion estimation (ME) is based on the new block search mechanism, which is developed with the modification in the Ordered Tree-based Hex-Octagon (OrTHO)-search algorithm along with the chronological Salp swarm algorithm (SSA) based on deep recurrent neural network (deepRNN) for optimally deciding the shape of search, search length of the tree and dimension. The chronological SSA is developed by integrating the chronological concept in SSA, which is used for training the deep RNN for ME. Findings The competing methods used for the comparative analysis of the proposed OrTHO-search based RD + chronological-salp swarm algorithm (RD + C-SSA) based deep RNN are support vector machine (SVM), fast encoding framework, wavefront-based high parallel (WHP) and OrTHO-search based RD method. The proposed video compression method obtained a maximum peak signal-to-noise ratio (PSNR) of 42.9180 dB and a maximum structural similarity index measure (SSIM) of 0.9827. Originality/value In this research, an effective block search mechanism was developed with the modification in the OrTHO-search algorithm along with the chronological SSA based on deepRNN for the video compression-HEVC standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.