Abstract

A Gaussian multiple-input multiple-output wiretap channel in which the eavesdropper and legitimate receiver are equipped with arbitrary numbers of antennas and the transmitter has two antennas is studied in this paper. The input covariance matrix that achieves the secrecy capacity is determined. In particular, it is shown that the secrecy capacity of this channel can be achieved by linear precoding . Precoding and power allocation schemes that maximize the achievable secrecy rate, and thus achieve the secrecy capacity, are developed. The secrecy capacity is then compared with the achievable secrecy rate of generalized singular value decomposition (GSVD)-based precoding, which is the best previously proposed technique for this problem. Numerical results demonstrate that substantial gain can be obtained in secrecy rate between the proposed and GSVD-based precodings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.