Abstract
Fault detection and diagnosis of gear transmission systems have attracted a lot of attention in recent years, but there are very few papers dealing with the early detection of shaft cracks. In this paper, a new methodology for predicting failures of a gear shaft system is presented. The time synchronous averaging (TSA) method is applied to the gear shaft vibration data, and the wavelet transform technique is then used to obtain quantitative indicators of gear shaft deterioration. System deterioration is modeled as a hidden, 3-state continuous-time homogeneous Markov process. States 0 and 1, which are not observable, represent healthy and unhealthy system conditions, respectively. Only the failure state 2 is assumed to be observable. The computed quantities, which are stochastically related to the system state, are chosen as the observation process in the hidden Markov modeling framework. The objective is to develop a method for optimally predicting impending system failures, which maximizes the long-run expected average system availability per unit time. Model parameters are estimated using the EM algorithm and an optimal Bayesian fault prediction scheme is proposed. The entire procedure is illustrated using real gear shaft vibration data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.