Abstract

Green base stations, powered by renewable energy sources, have mainly been restricted to remote areas. In urban areas, recent technological advancements have strengthened the bidirectional power flow in microgrids (Smart Grids), giving the possibility of green LTE base stations acting as energy traders. To facilitate this trading, batteries are needed to deal with the inherent stochasticity of renewable energy sources. In this paper we provide a new technique for dimensioning batteries for a base station. We show how the solution depends on different boundary conditions set by the microgrid such as energy balancing cost, transaction fee and power price. The technique is based on a Markov decision process and considers uncertainty in traffic, renewable power production and power price in the microgrid. We also show how to quantify the energy balancing cost for the base station, supplementing current research on energy balancing in microgrids. The results show that for certain microgrid conditions, the value of modelling price uncertainty is insignificant. Also, the results show that it is never optimal to invest in more than the minimum required battery size given certain transaction fee and power price regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.