Abstract

A class of mathematical models for cancer chemotherapy which have been described in the literature take the form of an optimal control problem over a finite horizon with control constraints and dynamics given by a bilinear system. In this paper, we analyze a two-dimensional model in which the cell cycle is broken into two compartments. The cytostatic agent used as control to kill the cancer cells is active only in the second compartment where cell division occurs and the cumulative effect of the drug is used to model the negative effect of the treatment on healthy cells. It is shown that singular controls are not optimal for this model and the optimality properties of bang-bang controls are established. Specifically, transversality conditions at the switching surfaces are derived. In a nondegenerate setting, these conditions guarantee the local optimality of the flow if satisfied, while trajectories will be no longer optimal if they are violated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.