Abstract

In 1994, M.M. Popov [6] showed that the fundamental theorem of calculus fails, in general, for functions mapping from a compact interval of the real line into the ℓp-spaces for 0<p<1, and the question arose whether such a significant result might hold in some other non-Banach spaces. In this article we completely settle the problem by proving that the fundamental theorem of calculus breaks down in the context of any non-locally convex quasi-Banach space. Our approach introduces the tool of Riemann-integral averages of continuous functions, and uses it to bring out to light the differences in behavior of their approximates in the lack of local convexity. As a by-product of our work we solve a problem raised in [1] on the different types of spaces of differentiable functions with values on a quasi-Banach space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.