Abstract
This paper explores automatic generation control (AGC) of a more realistic 2-area multi-source power system comprising hydro, thermal, gas, and wind energy sources-based power plants in each control area. The wind power plants (WPPs) have been growing continuously worldwide due to their inherent feature of providing eco-friendly sustainable energy. But, operations of WPPs are associated with system stability problems due to lack of inertia. However, WPPs do not participate in the elimination of mismatch between generation and demand by AGC but disturbance can be injected by the WPPs due to the stochastic nature of wind energy. An optimal controller based on full state feedback control theory is designed to conduct the study. The system dynamic performance analysis is carried out for 1% step load disturbance in corresponding control areas. It is observed that the system dynamic graphs of deviation in area frequency and tie-line power are significantly improved with the implementation of optimal AGC controller compared to GA tuned classical controller. It has also been shown that the WPPs aid the increase in load disturbance when the input wind power reduces but it negates the effect of increase in load disturbance for increase in wind energy to the WPPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.