Abstract
We show that the multiplicative weight update method provides a simple recipe for designing and analyzing optimal Bayesian Incentive Compatible (BIC) auctions, and reduces the time complexity of the problem to pseudo-polynomial in parameters that depend on single agent instead of depending on the size of the joint type space. We use this framework to design computationally efficient optimal auctions that satisfy ex-post Individual Rationality in the presence of constraints such as (hard, private) budgets and envy-freeness. We also design optimal auctions when buyers and a seller's utility functions are non-linear. Scenarios with such functions include (a) auctions with "quitting rights", (b) cost to borrow money beyond budget, (c) a seller's and buyers' risk aversion. Finally, we show how our framework also yields optimal auctions for variety of auction settings considered in Alaei et al and Cai et al, albeit with pseudo-polynomial running times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.