Abstract

A profit‐maximizing seller has a single unit of a good to sell. The bidders have a pure common value that is drawn from a distribution that is commonly known. The seller does not know the bidders' beliefs about the value and thinks that beliefs are designed adversarially by Nature to minimize profit. We construct a strong maxmin solution to this joint mechanism design and information design problem, consisting of a mechanism, an information structure, and an equilibrium, such that neither the seller nor Nature can move profit in their respective preferred directions, even if the deviator can select the new equilibrium. The mechanism and information structure solve a family of maxmin mechanism design and minmax information design problems, regardless of how an equilibrium is selected. The maxmin mechanism takes the form of a proportional auction: each bidder submits a one‐dimensional bid, the aggregate allocation and aggregate payment depend on the aggregate bid, and individual allocations and payments are proportional to bids. We report a number of additional properties of the maxmin mechanisms, including what happens as the number of bidders grows large and robustness with respect to the prior over the value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.