Abstract

Aiming at the optimization of current stress with low voltage ratio and full ZVS, a control method combining variable duty cycle and phase shift was proposed based on dual active bridge (DAB) converters with DC blocking capacitors. By adding DC bias to the DC blocking capacitors, asymmetric duty modulation (ADM) can adjust the bias as needed. Based on the theoretical analysis of steady-state operation, the operating modes can be divided into eight modes. According to the features of each mode, equivalent circuits are established. The transmission power and the boundary of zero-voltage-switching (ZVS) are deduced through a detailed analysis of each mode. Based on the theoretical deduction, ADM is more suitable for a low voltage ratio. Verified by experiment, optimized asymmetric duty modulation (OADM) can increase efficiency by 3.58%, 6.57%, 8.81%, and 10.33% compared with DPS when P is equal to 0.36 and m is equal to 0.4, 0.3, 0.2, and 0.1, respectively. Using this method, the current stress of the converter is lighter than that under regular modulation when the voltage ratio m ≤ 0.5 with full ZVS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.