Abstract

AbstractWe consider numerical approximations of ill-posed elliptic problems with conditional stability. The notion of optimal error estimates is defined including both convergence with respect to discretisation and perturbations in data. The rate of convergence is determined by the conditional stability of the underlying continuous problem and the polynomial order of the approximation space. A proof is given that no approximation can converge at a better rate than that given by the definition without increasing the sensitivity to perturbations, thus justifying the concept. A recently introduced class of primal-dual finite element methods with weakly consistent regularisation is recalled and the associated error estimates are shown to be optimal in the sense of this definition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.