Abstract

We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a nondecreasing submodular function or minimize a nonincreasing supermodular function in the setting of bounded total curvature c. In the case of submodular maximization with curvature c, we obtain a (1 − c/e)-approximation --- the first improvement over the greedy (1 − e--c)/c-approximation of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as recent approaches that hold for an arbitrary matroid constraint.Our approach is based on modifications of the continuous greedy algorithm and non-oblivious local search, and allows us to approximately maximize the sum of a nonnegative, nondecreasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature.We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.