Abstract

Let C be a convex subset of a locally convex space. We provide optimal approximate fixed point results for sequentially continuous maps f:C→C¯. First, we prove that, if f(C) is totally bounded, then it has an approximate fixed point net. Next, it is shown that, if C is bounded but not totally bounded, then there is a uniformly continuous map f:C→C without approximate fixed point nets. We also exhibit an example of a sequentially continuous map defined on a compact convex set with no approximate fixed point sequence. In contrast, it is observed that every affine (not-necessarily continuous) self-mapping of a bounded convex subset of a topological vector space has an approximate fixed point sequence. Moreover, we construct an affine sequentially continuous map from a compact convex set into itself without fixed points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.