Abstract

An optimal anti-lock braking control strategy using nonlinear variable voltage charging scheme for an electric-wheel vehicle is developed with aim of improving energy recovery efficiency on the premise of vehicle safety under the critical braking situation. A variable voltage charging control scheme is proposed with its operational principles to obtain maximum energy recovery as well as to balance the energy differences of each battery cell during the anti-lock braking. Given the nonlinearity of in-wheel motor, the nonlinear variable voltage charging control law is obtained on the basis of parameters fitting via experimental data. An ideal regenerative braking torque calculated by the nonlinear variable voltage charging control law is set as one of the disturbance vectors and an optimal sliding mode–anti-lock braking control strategy is developed to provide optimal hydraulic pressure for anti-lock braking system. In this manner, the torque allocation process is omitted by using a compensation control of the hydraulic braking torque. Simulation results corroborate the effectiveness of the proposed optimal anti-lock braking control strategy with higher energy recovery efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.