Abstract

This paper establishes the angular separation requirements for angle-of-arrival (AOA) sensors in order to achieve the best mean squared error (MSE) localization performance for arbitrary but fixed sensor ranges. Optimal sensor placement for localization arises in several practical applications such as trajectory optimization for moving sensor platforms, e.g., unmanned aerial vehicles (UAVs). In optimal UAV path planning the angular separation between UAVs is an important parameter that has a significant impact on fuel efficiency and inter-UAV distance constraints. The paper shows that optimal angular sensor separation is in general not unique, and that when all sensors are equidistant from the emitter, there may exist optimal sensor configurations with non-uniform angular sensor separation in addition to equiangular separation. The results of the paper are illustrated with extensive simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.