Abstract

This paper proposes a precoded faster-than-Nyquist (FTN) signaling scheme based on singular-value decomposition (SVD) with optimal power allocation. An information-theoretic analysis is conducted on the proposed SVD-precoded FTN signaling architecture. Analytical performance results demonstrate that the proposed optimal scheme outperforms its conventional Nyquist-criterion- based counterpart and the conventional SVD- precoded FTN signaling scheme, which does not use power allocation. In order to overcome the limitations associated with significantly low singular values, suboptimal truncated power allocation is incorporated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.