Abstract
We discuss in this paper optimality properties of identification algorithms in a set membership framework. We deal with restricted-complexity (conditional) identification, where approximations (models) to a possibly complex system are selected from a low dimensional space. We discuss the worst- and average-case settings. In the worst-case setting, we present results on optimality, or suboptimality, of algorithms based on computing the unconditional or conditional Chebyshev centres of an uncertainty set. In the average-case setting, we show that the optimal algorithm is given by the projection of the unconditional Chebyshev centre. We show explicit formulas for its average errors, allowing us to see the contribution of all problem parameters to the minimal error. We discuss the case of weighted average errors corresponding to non-uniform distributions over uncertainty sets, and show how the weights influence the minimal identification error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematical and Computer Modelling of Dynamical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.