Abstract

The authors derive linear and nonlinear approximations to the postdetection likelihood function for scintillator interaction time in nuclear particle detection systems. The likelihood function is the optimal statistic for performing detection and estimation of scintillator events and event times. The authors derive the likelihood function approximations from a statistical model for the postdetection waveform which is common in the optical communications literature and takes account of finite detector bandwidth, random gains, and thermal noise. They present preliminary simulation results for the associated approximate maximum likelihood timing estimators which indicate that significant MSE (mean square error) improvements can be achieved for low postdetection signal-to-noise ratio.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.