Abstract

The problem of solving tridiagonal linear systems on parallel distributed-memory environments is considered in this paper. In particular, two common direct methods for solving such systems are considered: odd-even cyclic reduction and prefix summing. For each method, a variety of lower bounds on execution time for solving tridiagonal linear systems are presented. Specifically, lower bounds are presented that (a) hold when the number of data items per processor is bounded, (b) are general lower bounds, and (c) for specific data layouts commonly used in designing parallel algorithms to solve tridiagonal linear systems. Furthermore, algorithms are presented that have running times within a constant factor of the lower bounds provided. Lastly, a comparison of bounds for odd-even cyclic reduction and prefix summing is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.