Abstract

With the advances of power electronic technology, direct-driven permanent magnet synchronous generators (PMSGs) have increasingly drawn the interest of wind turbine manufacturers. At the present time, a commercial PMSG wind turbine primarily makes use of a passive rectifier followed by an insulated gate bipolar transistor (IGBT) inverter. Although a PMSG wind turbine with two back-to-back voltage source IGBT converters is considered more efficient, it has not been widely adopted by the wind power industry. This paper investigates both the conventional and a novel vector control mechanism for a PMSG wind turbine that has two side-by-side voltage source pulsewidth modulation converters. The proposed approach is based on a direct-current vector control mechanism for control of both machine- and grid-side converters of a PMSG wind turbine. Then, an optimal control strategy is developed for integrated control of PMSG maximum power extraction, reactive power, and grid voltage support controls. A transient system simulation using SimPowerSystem is built to investigate the performance of the conventional and proposed control techniques for the PMSG wind turbine under steady and gusty wind conditions. This paper shows that when using the direct-current vector control structure, a PMSG system has excellent performance in various aspects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.