Abstract

An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscillators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes. The general performance characteristics of the cycle are investigated, based on the quantum master equation and the semigroup approach. The expressions for several important performance parameters such as the coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be equivalent to a classical Brayton cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.