Abstract

It is considered that the cycle of a quantum heat engine using many non-interacting spin-1/2 systems as the working substance is composed of two adiabatic and two isomagnetic field processes and is referred to as a spin quantum Brayton engine cycle. Based on the quantum master equation and semi-group approach, expressions for the efficiency and power output of the cycle are derived. By using numerical solutions, the power output of the heat engine subject to finite cycle duration is optimized. The maximum power output and the corresponding parameters are calculated numerically. The optimal region of the efficiency and the optimal ranges of temperatures of the working substance and times spent on the two isomagnetic field processes are determined, so that the general optimum performance characteristics of the cycle are revealed. Moreover, the optimal performance of the cycle in the high-temperature limit is also analysed in detail. The results obtained here are further generalized, so that they may be directly used to describe the performance of a quantum Brayton heat engine using spin-J systems as the working substance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.