Abstract

Recent advancements in renewable energy technologies, alongside changes in utility infrastructure and progressive government policies, have bolstered the integration of renewable-based distributed generation units within distribution systems. This paper introduces the Energy Valley Optimizer, a novel tool designed for the strategic placement of distributed generation units and capacitor banks. This placement is crucial not only for optimizing energy loss and enhancing bus voltage stability but also for promoting sustainable energy use and reducing environmental impact over the long term. By minimizing energy loss and voltage fluctuations, the optimizer contributes to a more sustainable and resilient energy system. It achieves this through the optimal allocation of resources across various load patterns within a 24 h period and is tested on the ALG-AB-Hassi-Sida 157-bus distribution network in South Algeria. Comparative analysis with existing algorithms—such as the Liver Cancer Algorithm, Walrus Optimization Algorithm, and Zebra Optimization Algorithm—demonstrates the superior performance of the Energy Valley Optimizer. It not only enhances technical and economic efficiencies but also significantly lowers the total cost of energy over 24 years, thus supporting sustainable development goals in energy management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.