Abstract

Reliability is a fundamental concept for power systems, and the optimal placement of switchable devices is a valuable tool for improvements in this area. The goal of this paper is to propose an optimal allocation method for circuit breakers and switches that can break the cost–reliability dilemma and simultaneously achieve reliability and economic improvement in terms of the distribution network. Moreover, in view of the fact that variations in the load level can affect the reliability of the distribution network, the variations of different load level scenarios are considered in this paper, where a mixed integer linear programming (MILP) model based on fictitious fault flows is established to derive the optimal allocation scheme that can adapt to the changes of multiple scenarios regarding the load. Meanwhile, due to the constraints of reliability indices, the post-fault reconfiguration scheme of a distribution network under different load level scenarios can also be obtained to enhance its overall reliability. Finally, the applicability and effectiveness of the proposed method are verified by numerical tests on a 54-node test system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call