Abstract

We study random number generators (RNGs), both in the fixed to variable-length (FVR) and the variable to fixed-length (VFR) regimes, in a universal setting in which the input is a finite memory source of arbitrary order and unknown parameters, with arbitrary input and output (finite) alphabet sizes. Applying the method of types, we characterize essentially unique optimal universal RNGs that maximize the expected output (respectively, minimize the expected input) length in the FVR (respectively, VFR) case. For the FVR case, the RNG studied is a generalization of Elias's scheme, while in the VFR case the general scheme is new. We precisely characterize, up to an additive constant, the corresponding expected lengths, which include second-order terms similar to those encountered in universal data compression and universal simulation. Furthermore, in the FVR case, we consider also a twice-universal setting, in which the Markov order k of the input source is also unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.