Abstract

The syntenic distance between two genomes is the minimum number of fusions, fissions, and translocations that can transform one genome to the other, ignoring the gene order within chromosomes. As the problem is NP-hard in general, some particular classes of synteny instances, such as linear synteny, exact synteny and nested synteny, are examined in the literature. In this paper, we propose a new special class of synteny instances, called uncovering synteny. We first present a polynomial time algorithm to solve the connected case of uncovering synteny optimally. By performing only intra-component moves, we then solve the unconnected case of uncovering synteny. We will further calculate the diameters of connected and unconnected uncovering synteny, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.