Abstract
The computation model on which the algorithms are developed is the reconfigurable array of processors with wider bus networks (abbreviated to RAPWBN). The main difference between the RAPWBN model and other existing reconfigurable parallel processing systems is that the bus width of each network is bounded within the range [2,[/spl radic/(N)]]. Such a strategy not only saves the silicon area of the chip as well as increases the computational power enormously, but the strategy also allows the execution speed of the proposed algorithms to be tuned by the bus bandwidth. To demonstrate the computational power of the RAPWBN, the channel-assignment problem is derived in this paper. For the channel-assignment problem with N pairs of components, we first design an O(T + [N//spl omega/]) time parallel algorithm using 2N processors with a 2N-row by 2N-column bus network, where the bus width of each bus network is /spl omega/-bit for 2 /spl les/ /spl omega/ /spl les/ [/spl radic/N] and T = [log/sub /spl omega//N] + 1. By tuning the bus bandwidth to the natural log N-bit and the extended N/sup 1/c/-bit (N/sup 1/c/ > log N) for any constant c and c /spl ges/ 1, two more results which run in O(log N/log log N) and O(1) time, respectively, are also derived. When compared to the algorithms proposed by Olariu et al. [17] and Lin [14], it is shown that our algorithm runs in the equivalent time complexity while significantly reducing the number of processors to O(N).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.