Abstract

A continuous adjoint formulation is used to determine optimal airfoil shapes in unsteady viscous flows at Re = 1 × 10 4. The Reynolds number is based on the free-stream speed and the chord length of the airfoil. A finite element method based on streamline-upwind Petrov/Galerkin (SUPG) and pressure-stabilized Petrov/Galerkin (PSPG) stabilizations is used to solve both the flow and adjoint equations. The airfoil is parametrized via a Non-Uniform Rational B-Splines (NURBS) curve. Three different objective functions are used to obtain optimal shapes: maximize lift, minimize drag and minimize ratio of drag to lift. The objective functions are formulated on the basis of time-averaged aerodynamic coefficients. The three objective functions result in diverse airfoil geometries. The resulting airfoils are thin, with the largest thickness to chord ratio being only 5.4%. The shapes obtained are further investigated for their aerodynamic performance. Maximization of time-averaged lift leads to an airfoil that produces more than six times more lift compared to the NACA 0012 airfoil. The excess lift is a consequence of the large peak and extended region of high suction on the upper surface and high pressure on the lower surface. Minimization of drag results in an airfoil with a sharp leading edge. The flow remains attached for close to 70% of the chord length. Minimization of the ratio of drag to lift results in an airfoil with a shallow dimple on the upper surface. It leads to a fairly large value of the time-averaged ratio of lift to drag (∼ 17.8). The high value is mostly achieved by a 447% increase in lift and 16% reduction in drag, compared to a NACA 0012 airfoil. Imposition of volume constraint, for the cases studied, is found to result in airfoils that have lower aerodynamic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call