Abstract

The problem of optimally controlling the processing rate of tasks in Discrete Event Systems with hard real-time constraints has been addressed in prior work under the assumption that a feasible solution exists. Since this cannot generally be the case, we introduce in this paper an admission control scheme in which some tasks are removed with the objective of maximizing the number of remaining tasks which are all guaranteed feasibility. We derive several optimality properties based on which we develop a computationally efficient algorithm for solving this admission control problem under certain conditions. Moreover, when no future task information is available, we derive necessary and sufficient conditions under which idling is optimal and define a metric for evaluating when and how long it is optimal to idle. Numerical examples are included to illustrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.