Abstract

We consider the optimal sampling times for a symmetric two-state continuous time Markov chain. We first consider sampling times of the form and find the optimal τ to minimize the asymptotic variance of our estimated parameter. This optimal τ depends upon the true unknown parameters and so it is infeasible in practice. To address this, we consider propose an adaptive scheme which we requires no knowledge of the true underlying parameter, we show that this method is asymptotically equivalent to the optimal fixed time design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.