Abstract

In this paper, a novel solution to the active fault diagnosis problem for stochastic linear Markovian switching systems on the infinite-time horizon is proposed. The imperfect state information problem of designing an active fault detector that minimizes a general detection cost criterion is reformulated as the perfect state information problem using sufficient statistics. The reformulation decreases theoretical complexity and enables to find a suboptimal solution by dynamic programming. However, classical approaches are computationally complex or fail to identify the most representative states of the system. This paper combines the active fault detection, state estimation, and reinforcement learning. In the proposed algorithm, temporal difference learning is used to train the active fault detector based on input-output data from the system simulation. The designed detector can be then used online. A numerical example is presented to verify the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.