Abstract
In this paper, an airborne multi-user (MU) multiple-input multiple-output (MIMO) communication system is investigated, consisting of multiple users sources, multiple users destinations, and an aerial platform acting as a decode-and-forward (DF) relay. In this context, a novel three-dimensional (3-D) geometry-based optimization method for the relay location is proposed and expressions for the outage probability are presented. The results highlight the impact of the relay position, power allocation, fading severity, and number of antennas on the system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.