Abstract

Abstract : A series of amorphous azobenzene-containing polymers were cast as thin films and shown to produce both reversible volume diffraction gratings and high-efficiency surface gratings by laser irradiation at an absorbing wavelength. The latter process involves localized mass transport of the polymer chains to a high degree, as atomic force microscopy reveals surface profile depths near that of the original film thickness. A mechanism for this phenomenon is proposed which involves pressure gradients as a driving force, present due to different photochemical behaviors of the azo chromophores at different regions of the interference pattern. This mechanism of photoinduced viscoelastic flow agrees well with the results of experiments investigating the effect of the polarization state of the interfering writing beams and the photochemical behavior of the chromophore, the free volume requirements of the induced geometric changes, and the viscoelastic flow of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.