Abstract

Resistive RAMs (Re-RAMs) have come to the fore as a rising star among the next generation non-volatile memories with fast operational speed, excellent endurance and prolonged data retention capabilities. Re-RAMs are being profusely used as storage and processing modules in neuromorphic hardware and high frequency switches in radio-frequency (RF) circuits. Owing to its intrinsic hysteresis and abundance of charge migration pathways, lead halide perovskites have emerged as a promising switching medium in Re-RAMs besides their ubiquitous usage in optoelectronic devices. Here, we adopted a lead-free eco-friendly methyl-ammonium bismuth iodide (MA3Bi2I9) perovskite (prepared by solvent-free engineering) as the switching medium sandwiched between copper (Cu) and indium doped tin oxide (ITO) electrodes. The devices exhibited a 104 high ON/OFF ratio that provided a large window for the multi-bit data storage in a single cell with good accuracy. Robust endurance of 1730 cycles and good data retention ability of >3 × 105 s were also observed. Careful switching speed measurements showed the devices can operate with an ultra-fast speed of 10 ns for writing and erasing respectively. The devices responded to light illumination and the prolonged retention of the opto-electrically tuned resistance states paved the way for image memorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.