Abstract

Optically transparent microwave absorbing metasurfaces have shown great potential and are needed in multiple applications environments containing optical windows owing to their ability to reduce backscattering electromagnetic (EM) signals while keeping continuous optical observation. Meanwhile, they are also required to have adaptive EM manipulation capability to cope with complex and capricious EM environments. As a general approach, distributed circuit components, including positive-intrinsic-negative diodes and varactors and sensing components, are integrated with passive absorbing metasurfaces to realize adaptive control of microwave absorption. However, these circuit elements generally require bulky electrical wires and complex control circuits to regulate the operating state, resulting in the absorbing structures being optically opaque. Hence, it is a great challenge to realize self-operating absorbers while maintaining optical transparency. Here, we report an optically transparent cognitive metasurface made of patterned graphene sandwich structures and a radio frequency detector, which can achieve adaptive frequency manipulation to match incident EM waves. As a proof-of-principle application example, we realize a closed-loop automatic absorber system prototype of the proposed graphene metasurface with self-adaptive frequency variation, without any human intervention. The approach may facilitate other adaptive metadevices in microwave regime with high-level recognition and manipulation and, more generally, promote the development of intelligent stealth technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.