Abstract
Exploring glass materials beyond inorganic components represents a new direction in the development of artificial transparent materials. Inspired by the successes of polymeric and supramolecular glasses, we shifted our attention to the preparation of a transparent glass through the polymerization of low-molecular-weight monomers that are naturally tailored with noncovalent recognition motifs. In this work, an imidazolium unit bearing a vinyl group and a tetrafluoroborate counter anion was selected to construct an artificial glass. Experimental and theoretical investigations revealed that the cross-linking behavior of anions effectively transformed linear polymeric chains into three-dimensional networks. The polymeric-supramolecular glass exhibits a tough tensile strength (61.31 MPa), high Young's modulus (1.17 GPa), and good optical transparency (>90%), which are comparable to those of polymethyl methacrylate. Moreover, the obtained glass maintains excellent mechanical toughness and optical transparency over a wide temperature range (from -150 to 150 °C). The material shows a superior impact resistance (18.34 kJ m-2) and flame retardancy (V0 rating), which are barely achieved by supramolecular materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.