Abstract
Nematic liquid crystal (NLC) is one of most useful soft matters. Because the molecular orientation can be controlled electrically, NLC is widely applied to display devices. It is known that NLC exhibits strong second-harmonic-generation (SHG) due to its orderly arranged molecules. The strength of SHG is strongly dependent on the angle between the incident beam polarization and the NLC molecular orientation, so the SHG in NLC can be switched on/off by rotating the NLC director. However, it is very difficult to control the orientation of NLC director electrically within a micrometer spatial domain. In this report, we demonstrated the orientation control of NLC with sub-micrometer spatial resolution based on optical Freedericksz transition (OFT) combined with a high-numerical-aperture objective. We used azo-dye doped NLC to reduce the intensity threshold of OFT with 473-nm excitation. Interestingly, we found that the threshold of OFT increases with tighter focuses. This effect can be explained by the intermolecular forces from the NLC molecules around the focal spot. By incorporating both the blue laser and a femtosecond near-infrared laser into an optical scanning microscope, we have successfully demonstrated switch of SHG inside a NLC thin film. Note that SHG is confined within femtoliter focal volume due to its intrinsic nonlinearity. That is, we have achieved an ultrasmall switch of nonlinear optical signal in NLC. This work will find applications in optical communication as well as optical-base storage system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.