Abstract

Reversible, fast, all-optical switching of the reflection of a cholesteric liquid crystal (CLC) is demonstrated in a formulation doped with push-pull azobenzene dyes. The reflection of the photosensitive CLC compositions is optically switched by exposure to 488 and 532 nm CW lasers as well as ns pulsed 532 nm irradiation. Laser-directed optical switching of the reflection of the CLC compositions occurs rapidly, within a few hundred milliseconds for the CW laser lines examined here. Also observed is optical switching on the order of tens of nanoseconds when the CLC is exposed to a single nanosecond pulse with 0.2 J/cm(2) energy density. The rapid cis-trans isomerization typical of push-pull azobenzene dye is used for the first time to rapidly restore the reflection of the CLC from a photoinduced isotropic state within seconds after cessation of light exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.