Abstract
Optically stimulated luminescence (OSL) of synthetic stishovite was investigated for a future dating technique of meteor impact craters. Luminescence around 330 nm was measured on the γ-ray irradiated stishovite under two stimulating light sources of infrared laser (830 nm) and blue light emitting diode set (470 nm). Thermoluminescence (TL) studies before and after the OSL measurements showed the intensities around 100–200°C and 220–350°C to increase and those around 350–450°C to decrease. This indicates that a part of deep-trapped charges excited during the OSL measurements were retrapped by shallower traps. The infrared stimulated luminescence (IRSL) after the TL measurement up to 450°C could not be detected, while the blue light stimulated luminescence (BLSL) after TL had about one-tenth of the intensity before TL. This indicates that a part of the charges in shallower traps were detrapped thermally and returned to the deeper traps which were related to BLSL. The result implies that some of the BLSL-related traps are quite stable at room temperature and could be used for geological dating. In addition, two paramagnetic centers produced by sudden release of high pressure in synthesis process were found in the unirradiated stishovite by electron spin resonance (ESR). Their g-factors are g ∥=2.00181 and g ⊥=2.00062 for an axial signal and g=2.00305 for the other isotropic signal. These signals could be used for an evidence of impacts if those signals could be stored in geological time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.