Abstract

Abstract Heat retainer hearths are a prominent component of the Holocene archaeological record of a number of drylands. Rocks within these hearths were fired in antiquity, emptying the optically stimulated luminescence (OSL) source traps of mineral grains within the rock. Since partial bleaching and mixing of grains within a lithified heat retainer is impossible, these rocks offer the opportunity to test our understanding of OSL signal accumulation and measurement processes. First, we show that OSL ages calculated using grains size fractions from 4 to 11 μm up to 180–210 μm are indistinguishable for a single heat retainer, indicating that the environmental and instrumental dose rate correction factors routinely used in luminescence dating are accurate. Second, we used single-grain dose recovery and equivalent dose measurements to determine the overdispersion due to beta microdosimetry. For the heat retainers measured in this study, overdiseprsion due to beta microdosimetry ranges from 8.9 ± 1.8 to 20.3 ± 1.6%. Third, we investigate the impact of mechanical crushing on the measured equivalent dose from quartz, to test the potential of using this technique to liberate dateable material from heat retainers which are not acid soluble. A small (

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.