Abstract

Optically resonant all-dielectric nanostructures attractively exhibit reduced losses compared to their plasmonic counterparts; however, achieving strong field enhancements at the nanoscale, especially within solid-state media, has remained a significant challenge. In this work, we demonstrate how subwavelength modifications to a conventional silicon nanodisk enable strong sub-diffractive and polarization dependent field enhancements in devices supporting Mie resonances, including anapole-like modes. We examine the electromagnetic properties of both individual and arrayed “diabolo nanodisks,” which are found to exhibit |E|2/|E0|2 enhancements in the range ∼102–104, in the high index medium, depending on geometrical considerations. In addition to supporting a localized electric field “hot-spot” similar to those predicted in diabolo nanostructured photonic crystal cavities and waveguide designs, we identify an anti-diabolo effect leading to a broadband “cold-spot” for the orthogonal polarization. These findings offer the prospect of enhancing or manipulating light–matter interactions at the nanoscale within an all-dielectric (metal free) platform for potential applications ranging from non-linear optics to quantum light sources, nano-sensing, nanoparticle-manipulation, and active/tunable metasurfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call