Abstract
To avoid the complexity of the circuit for in-memory computing, simultaneous execution of multiple logic gates (OR, AND, NOR, and NAND) and memory behavior are demonstrated in a single device of oxygen plasma-treated gallium selenide (GaSe) memtransistor. Resistive switching behavior with RON /ROFF ratio in the range of 104 to 106 is obtained depending on the channel length (150 to 1600nm). Oxygen plasma treatment on GaSe film created shallow and deep-level defect states, which exhibit carriers trapping/de-trapping, that lead to negative and positive photoconductanceat positive and negative gate voltages, respectively. This distinguishing feature of gate-dependent transition of negative to positive photoconductance encourages the execution of four logic gates in the single memory device, which is elusive in conventional memtransistor. Additionally, it is feasible to reversibly switch between two logic gates by just adjusting the gate voltages, e.g., NAND/NOR and AND/NAND. All logic gates presented high stability. Additionally, memtransistor array (1×8) is fabricated and programmed into binary bits representing ASCII (American Standard Code for Information Interchange) code for the uppercase letter "N". This facile device configuration can provide the functionality of both logic and memory devices for emerging neuromorphic computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.