Abstract

We report on optically pumped lasing at 500 nm on InGaN laser structures grown by plasma assisted molecular beam epitaxy. The InGaN laser structures were grown under group III-rich conditions on bulk (0001) GaN substrates. The influence of the nitrogen flux and growth temperature on the indium content of InGaN layers was studied. We demonstrate that at elevated growth temperatures, where appreciable dissociation rate for In-N bonds is observed, the indium content of InGaN layers increases with increasing nitrogen flux. We show that growth of InGaN at higher temperatures improves optical quality of InGaN quantum wells, which is crucial for green emitters. The influence of piezoelectric fields on the lasing wavelength is also discussed. In particular, the controversial issue of partial versus complete screening of built-in electric field at lasing conditions is examined, supporting the former case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.