Abstract

AbstractArtificial synapses and neurons are crucial milestones for neuromorphic computing hardware, and memristors with resistive and threshold switching characteristics are regarded as the most promising candidates for the construction of hardware neural networks. However, most of the memristors can only operate in one mode, that is, resistive switching or threshold switching, and distinct memristors are required to construct fully memristive neuromorphic computing hardware, making it more complex for the fabrication and integration of the hardware. Herein, we propose a flexible dual‐mode memristor array based on core–shell CsPbBr3@graphdiyne nanocrystals, which features a 100% transition yield, small cycle‐to‐cycle and device‐to‐device variability, excellent flexibility, and environmental stability. Based on this dual‐mode memristor, homo‐material‐based fully memristive neuromorphic computing hardware—a power‐free artificial nociceptive signal processing system and a spiking neural network—are constructed for the first time. Our dual‐mode memristors greatly simplify the fabrication and integration of fully memristive neuromorphic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.