Abstract

We report on the realization of a new compact strontium optical clock using a 2-D magneto-optical-trap (2D-MOT) as cold atomic source and a multi-wavelength cavity as the frequency stabilization system. All needed optical frequencies are stabilized to a zero-thermal expansion high-finesse optical resonator and can be operated without frequency adjustments for weeks. We present the complete characterization of the apparatus. Optical control of the atomic source allows us to perform low-noise clock operation without atomic signal normalization. Long- and short-term stability tests of the clock have been performed for the <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">88</sup> Sr bosonic isotope by means of interleaved clock operation. Finally, we present the first preliminary accuracy budget of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call