Abstract
The formation of optically isotropic liquid crystal (LC) media has been investigated by doping the star-shaped LC molecular surfactants (SiLC) into the rod-shaped twin LC host molecules (DiLC). The experimental phase diagram was constructed on the basis of differential scanning calorimetry (DSC) and then a theoretical calculation was conducted through a combined Flory-Huggins (FH)/Maier-Saupe-McMillan (MSM)/phase field (PF) model to account for the experimental results. The phase diagram of the SiLC/DiLC mixtures revealed the broad coexistence regions such as smectic A + crystal (SmA1 + Cr2), liquid + crystal (L1 + Cr2), and liquid + nematic (L1 + N2) at the intermediate composition along with the narrow single phase crystal (Cr2), smectic (SmA1), and nematic (N2) regions. The morphologies and structures of these coexistence regions were further confirmed by polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). At the 80/20 SiLC/DiLC composition, the optical anisotropy was induced under an alternating current (AC) electric field above its isotropization temperature. The formation of an optically isotropic LC medium in mixtures of the SiLC molecular surfactants and nematic LC host may allow us to develop new electro-optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.