Abstract

AbstractA comprehensive study on the output power, the modulation response, and the relative intensity noise (RIN) behavior of an optically injection‐locked mid‐infrared quantum‐cascade laser reveals that the modulation bandwidth and the output power are enhanced in the stable locking range, while the RIN of the slave laser is a superposition of the master and slave noise sources. Since the RIN level of the master laser can even take the lead, a design procedure is introduced to improve the main characteristics of a free‐running laser, including the RIN, the photon lifetime, the modulation bandwidth, and the bias current, using facet reflectivity tailoring. A figure of merit is defined and the RIN reduction of about 20 dB Hz−1 is obtained for very low injection powers compared with the injection‐locked system before the design of master laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.