Abstract
Formation of defect states by optical induction in one-dimensional photonic lattices fabricated in photorefractive lithium niobate is investigated experimentally. First, by using a moving narrow laser beam for defect recording, we investigate light propagation in samples containing single line defects and adjacent channel defects forming directional couplers. Then, these results are used to create lattices with randomly distributed defects, resembling a disordered optical potential. In such lattices, wave propagation is found to change from ballistic transport to transverse Anderson-like light localization as a function of induced disorder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.