Abstract

Metasurfaces are 2D planar lattices of nanoparticles that allow the manipulation of incident light properties. Because of that attribute, metasurfaces are promising candidates to replace bulky optical components. Traditionally, metasurfaces are made from a periodic arrangement of identical unit cells. However, more degrees of freedom are accessible if an increasing number of structured unit cells are combined. The present study explores a type of dielectric metasurface with complex supercells composed of Mie-resonant dielectric nanocylinders and nanoscale rings. We numerically and experimentally demonstrate the signature of an optical response that relies on the structures sustaining staggered optically induced magnetic dipole moments. The optical response is associated with an optical antiferromagnetism. The optical antiferromagnetism exploits the presence of pronounced coupling between dissimilar Mie-resonant dielectric nanoparticles. The coupling is manipulated by engineering the geometry and distance between the nanoparticles, which ultimately enhances their effective magnetic response. Our results suggest possible applications in resonant nanophotonics by broadening the modulation capabilities of metasurfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.