Abstract

We show theoretically that strong electron coupling to circularly polarized photons in non-singly-connected nanostructures results in the appearance of an artificial gauge field that changes the electron phase. The effect arises from the breaking of time-reversal symmetry and is analogous to the well-known Aharonov-Bohm phase effect. It can manifest itself in the oscillations of conductance as a function of the intensity and frequency of the illumination. The theory of the effect is elaborated for mesoscopic rings in both ballistic and diffusive regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.